商业日报网

东京科技大学发明新框架减少内存使用量并提高大规模AI图形分析的能源效率

来源:盖世汽车    发布时间:2025-06-26 07:04:56   阅读量:12310   

盖世汽车讯 据外媒报道,日本东京科技大学的研究人员开发出可扩展且高效的图神经网络加速器BingoCGN,能够通过图分区实现实时大规模图推理。这一突破性框架采用创新的跨分区消息量化技术和新颖的训练算法,显著降低了内存需求,并提高了计算效率和能效。

图神经网络是强大的人工智能(AI)模型,旨在分析复杂的非结构化图数据。在这类数据中,实体表示为节点,实体之间的关系表示为边。GNN已成功应用于许多实际应用,包括社交网络、药物研发、自动驾驶和推荐系统。尽管GNN潜力巨大,但实现对自动驾驶等任务至关重要的实时大规模GNN推理仍然充满挑战。

大型图需要大量内存,这通常会溢出片上缓冲区。这迫使系统依赖于速度较慢的片外内存。由于图数据存储不规律,这会导致内存访问模式不规律,从而降低计算效率并增加能耗。

一个有前景的解决方案是图分区,将大型图划分为较小的图,每个图分配各自的片上缓冲区。随着分区数量的增加,这将导致内存访问模式更加本地化,并且缓冲区大小要求也更小。

【免责声明】 凡本站未注明来源为(商业日报网)的所有作品,均转载、编译或摘编自其它媒体,转载、编译或摘编的目的在于传递更多信息,并不代表本站赞同其观点和对其真实性负责。其他媒体、网站或个人转载使用时必须保留本站注明的文章来源,并自负法律责任。

热文推荐

首页 | 焦点| 业界| 财经| 企业| 消费| 行业| 股票| 视窗| 商业| 经贸| 产业| 资讯

Copyright @ 2010- 备案号:鄂ICP备2021013412号-3 网站地图